EELE 477 Digital Signal Processing

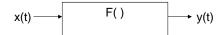
1 Introduction

Course Overview

- Summarize course format
- Review Syllabus
- Discuss lab and lab reports
- Describe course philosophy: learning via lecture, homework, hands-on lab, and reading assignments

EELE 477 DSP Spring 2015 Maher

Signals


- Continuous time vs. discrete time
- 1-D signals and 2-D signals (images)
- Concept of sampling
- Signals can be represented by mathematical functions

EELE 477 DSP Spring 2015 Maher

3

Systems

• A system transforms a signal into a new signal or a different signal representation

- y(t) = F(x(t))
- Examples: y(t) = 2*x(t) $y(t) = [x(t)]^2$

y(t) = x(t-2)

EELE 477 DSP Spring 2015 Maher

Systems (cont.)

 A discrete-time system is the same concept:

y[n] = 2*x[n]

 $y[n] = \{x[n]\}^2$

y[n] = x[n-2]

 Convert continuous-time signal to discretetime signal:

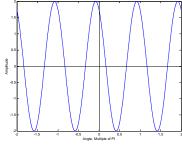
 $y[n] = x(nT_s),$

where T_s is the sampling period

EELE 477 DSP Spring 2015 Maher

5

Important Signals: Sinusoids


• $x(t) = A \cos(\omega_0 t + \phi)$

A = amplitude

 ω_0 = radian frequency

 ϕ = phase shift

- Example: $2 \cos(4\pi t + \pi/6)$
- $\sin(\theta) = \cos(\theta \pi/2)$ $\cos(\theta) = \sin(\theta + \pi/2)$

EELE 477 DSP Spring 2015 Maher

Sinusoids (cont.)

- Periodic: $x(t+T_0) = x(t)$ $cos(\omega_0 t + 2\pi k) = cos(\omega_0 t)$
- $cos(\omega_0(t+T_0)) = cos(\omega_0 t)$ iff $\omega_0 T_0 = 2\pi k$
- Period vs. Frequency $T_0 = 1/f_0$
- Consider waveform effect of changing f_o

EELE 477 DSP Spring 2015 Maher

7

Practical: Sinusoids in Matlab

- Example: create a 5 cycle segment of a 440Hz sinusoid with amplitude=127
- Step 1: Matlab is *discrete-time*, so choose sample rate. For example, pick 100 samples per waveform cycle:

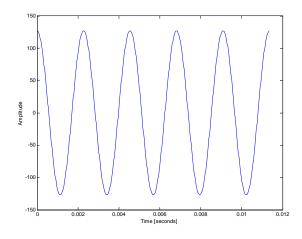
100 samples	x 440 cycles =	44000 samples
cycle	second	second

EELE 477 DSP Spring 2015 Maher

Matlab sinusoids (cont.)

 y[n]=127*cos(2πfnT_s) for 5 cycles, the range of n is

5 cycles	second	44000 samples	= 500 samples
	440 cycles	second	


• For Matlab:

```
y=127*cos(2*pi*440*(0:499)/44000);
plot((0:499)/44000 , y );
```

EELE 477 DSP Spring 2015 Maher

9

Matlab sinusoids (cont.)

EELE 477 DSP Spring 2015 Maher

Matlab sinusoids (cont.)

- What if we chose a lower sampling rate (longer sample period)?
- How does Matlab "connect the dots" when plotting?
- What other plotting options?

EELE 477 DSP Spring 2015 Maher

П