Acidifying a sample to a specific acid concentration before analysis

For ICP analysis, aqueous samples need to be acidified to keep the analytes of interest in solution prior to being nebulized. The acid concentration of the standards and rinse must be matched to the acid concentration in the sample to improve the plasma stability. Samples can be acidified with either HCl or HNO_{3}. Some analytes are more stable in one acid or the other. For analysis of the major cations in natural waters ($\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{K}$) nitric acid has worked well. The higher the concentration of salts the higher the concentration of acid that is needed. If the sample has floc, it needs increased acidification. The higher the acid concentration the more degradation by devitrification the torch will see.

Always use trace metal grade acid for ICP samples. Lower grade acids have metal contamination.

Say we want to acidify our sample to $0.5(\mathrm{wt}) \% \mathrm{HNO}_{3}$. How much acid will you need to add? Concentrated nitric acid is $67 \mathrm{wt} \%$.

$$
\begin{aligned}
& \left(\frac{x g \times \frac{67 g \text { NO3 }}{100 g \text { acid }}}{10 g \text { sol'n }}\right)=\frac{0.05 g \text { NO3 }}{100 g \text { solution }} \\
& \frac{0.05 \mathrm{gHNO}^{2}}{100 \mathrm{~g} \mathrm{sol}^{\prime} n} \times 10 \mathrm{gsol}^{\prime} n \times \frac{100 \mathrm{~g} \text { acid }}{67 \mathrm{~g} \mathrm{HNO3}} \times \frac{1 \mathrm{ml}}{1.5 \mathrm{~g} \mathrm{acid}} \times \frac{1000 \mathrm{ul}}{\mathrm{ml}}=50 \mathrm{ul} \text { of acid }
\end{aligned}
$$

You will need to add 50 ul of $67 \% \mathrm{HNO}_{3}$ to a sample of 10 ml to obtain $0.5 \% \mathrm{HNO}_{3}$ in the sample.

		5ample volume	\mathbf{l}		
desired acid concentration	$\mathbf{0 . 5 \%}$	25 ul	50 ul	5 ml	10 ml
	$\mathbf{1 \%}$	50 ul	100 ul	10 ml	20 ml
	$\mathbf{2 \%}$	100 ul	200 ul	20 ml	40 ml
	$\mathbf{4 \%}$	200 ul	400 ul	40 ml	80 ml

