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Computing the distance between point a and point b is typically considered to be very easy. However, there are 
times when computing a distance can take signifcant computation time; we call these expensive distance met-
rics. Suppose we have some expensive distance metric and we need to compute the distances between a bunch 
of points. Tis paper explores a method that to reduce the number of queries to the distance metric and the 
efect on clustering. Te authors fnd that total run time can be reduced while only inducing small inaccuracies 
in clustering output. 

1. Introduction 
Computing the distance between point a and point b 
is typically considered to be very easy. In most cases, 
we use simple Euclidean distance in two dimensions 
d(a,b) = √(a.x − b.x)2 + (a.y − b.y)2. Tese sorts of 
distances can be evaluated by a computer very quickly. 

But what if that is not always the case? Some 
applications use metrics (subsection 2.1) that are very 
expensive to compute. What if we said the distance 
between two points on Earth is the minimum 
distance making sure that a person could walk the 
entire thing (i.e. you can’t walk of a clif, over water, 
up a wall, etc.). Well that makes things harder as the 
answer is not always the straight line between a and 
b, we might have to go around a mountain or wind 
along a riverbank. Tere are a lot of diferent paths 
that we would have to compare which takes a long 
time. If we have to compute this distance a hundred 
times that would take a while, but what about a mil-
lion, or a few million. 

In many cases, we want to consider the distances 
between many diferent objects. For example, when 
clustering points we typically want to fnd the closest 
points to another. If we want to fnd the closest object 
to another point, we have to consider the distances to 
all the other objects in the dataset. If we want to do 
this for all pairs of points in the dataset (as in cluster-
ing) this results in (n) distance computations, where n2 
is the total number of points in the dataset. 
If n is large this can result in a huge number of dis-
tance computations (which we assume to take a long 
time). 

We want a way to approximate these distances so 
we don’t have to do the long distance computation so 
many times. In this paper, we implement an existing 
approximation algorithm [5] in order to test the 
runtime improvements compared to the loss of ac-
curacy from the approximation. Our project is based 
on work by Kerber and Nigmetov [5], a paper that 
presents an algorithm that computes an approximate 
distance metric on a fnite metrics space.We imple-
mented the approximation algorithm and tested it on 
two “expensive” metric spaces: Hausdorf distance [4] 
on point sets and continuous Frechet distance [8] on 
paths in ℝ. Ten we clustered the points using DB-
SCAN [3] with the actual and approximate distances. 
DBSCAN gives a potential practical application 
where this algorithm could be used, and can help map 
or quantify distortions caused by the approximation. 
We evaluated the performance of DBSCAN with 
homogeneity, completeness, and the V-measure [7]. 

Te rest of the paper is organized as follows. In 
Section 2 we provide basic information about what a 
metric is and the distance functions. In Section 3 we 
provide more details about the approximation algo-
rithm. In Section 4 we describe our experiment setup, 
and provide the results in Section 5. Finally, we give a 
discussion and concluding remarks in Section 6. 

2. Background 

2.1 Metrics 
What is a metric? At a high level a metric is a function 
with three properties (like Euclidean distance). If 

Curiositas : Fall 2021 23 

https://space.We
http://doi.org/10.15788.f2021.curio5


  

w---------

d(a b) is our metric then it has to satisfy these conditions: 

d(a, b) ∈ [0,∞) (2.1) 
d(a, b) = 0 if a=b (2.2) 

d(a, b) = d(a, b) (2.3) 
d(a, b) ≤ d(a, c) + d(a, b) (2.4) 

Te frst one (2.1) just says that we cannot have a negative 
distance.Te second one (2.2) says that if the distance 
between two points is zero (i.e. they are right on top of each 
other) then they are the same point. It also says that the 
distance between a point and itself must be zero. Te third 
condition (2.3) says it is just as far from a to b as it is from b 
to a. Te last condition (2.4) is called the triangle inequality 
and it is important to this paper. It says that it cannot be 
shorter (it could be the same) to go to a third `middle’ point 
then to the destination. For instance, it cannot be shorter to 
drive from Bozeman to Helena, then Helena to Butte than 
it is to drive directly from Bozeman to Butte. 

2.2 Big O Notation 
Big O notation is a way to denote the asymptotic complex-
ity of an algorithm. Tis is often used to denote running 
time or space usage of algorithms. 

Defnition 2.5 (Big O Notation)– A function f is Big O of 
a function g, denoted f ∈O(g), if there exists k, c such that 
0 ≤ f (n) ≤ c · g (n) for all n > k. 

One way to think about this, is to think about the domi-
nant term in the function, or the highest order term. 
For n large enough, the contribution of the other terms is 
negligible. We can also envision this graphically, if we zoom 
way out the graph of f (x) looks pretty much the same as the 
graph of c · g(x). 

2.3 Continuous Frechet Distance 
Frechet distance is a way to compare the distance between 
two curves. One common way to think about this is a 
person walking their dog. Te person is on one curve, while 
the dog is on the other. Te Frechet distance is the shortest 
leash the person could use. 

Mathematically, where A, B are curves, and α, β are con-
tinuous, non-decreasing reparameterizations of [0,1] where 
α(0) = β(0) = 0 and α(1) = β(1) = 1. [8] 

F(A, B) = inf max{d(A(α(t), B(β(t))} (2.6)
α, β t∈[0,1] 
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Vizualization of Frechet Distance 

F I G U R E  2  

Vizualization of Hausdorf 
Distance. 
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2.4 Hausdorf Distance 
Hausdorf Distance is used to compare the distance 
between two sets or point clouds. It is the maximum 
of the minimum distances between the sets. 
So take two collections of points, call them A and B. 
Pick a point in A, then fnd the closest point in B. 
We do this for all points in A. Ten repeat for B to A, 
and choose the one that is the biggest. 
In our experiments, we just used Euclidean distance 
(straight line √(a.x − b.x)2 + (a.y − b.y)2) as the distanc-
es between individual points within the point clouds. 

Mathematically, let d be a distance metric, then 

H(A, B) = max{ sup d(a, B), sup d(A, b)} (2.6) 
a∈A b∈B 

We can fairly trivially see that this takes O(nm) time 
where m = |A|, n = |B|. So for large sets (n, m big) 
this can be very expensive. 

2.5 Clustering Metrics 
Tese metrics are used to evaluate the quality of 
the clustering results in our experiments. We use: 
completeness, homogeneity, and v-score [7]. Tey 
are three diferent ways of considering how accurate 
a given clustering is on a scale 0-1. Suppose we have 
a set of points with true labels - classes. Te goal of 
the clustering problem is to produce clusters of these 
points that exactly match the true labels of the points; 
i.e. a cluster will contain all members of one class, and 
no members of any other class. 

Homogeneity - measures if all clusters contain 
only points of a single class. A cluster could be fully 
homogenous if it contains only a few number of 
points (of same class). In other words, a cluster can be 
homogenous if it is ‘smaller’ than or equal to the class. 

Completeness - measures if all points in a class 
belong to a single cluster. A cluster could be complete 
if it contains everything (we produce only one cluster). 
In other words, a cluster can be complete if it is `larg-
er’ than or equal to the class. 

V-Measure - combines homogeneity and com-
pleteness together in one value. It takes the weighted 
average of homogeneity and completeness. For our 
experiments we weight both terms equally, so it is just 
the average of the two values. 

We note a perfect clustering corresponds to a score 
of 1 on all metrics. 

3. Algorithm 
We implemented an 1 + ε approximation algorithm 
[5] for use with expensive distance metrics. 
Our implementation can be found on our GitHub 
repo.2 

2. https://github.com/nathanstoufer/expensive-distance-metrics 

Te overall goal of the algorithm is to reduce 
the number of explicit distance computations 
that are needed. Te 1 + ε is the error ratio, so the 
approximate distance

actual distance ≤ 1 + ε for any pair of points. We can 
choose ε to be anything we want, so this can be an 
arbitrarily good approximation. 

In the base case (computes exact distance, ε = 0) we 
would need to compute all the pairwise distances (n

2 ).
At a high level, the algorithm computes a pairwise dis-
tance between a, b and stores it as an edge in a graph. 
A graph just gives information about the connection: 
a is connected to c if there is an path from a to b in 
this graph. Tink of the path as our trip planner, we 
can go from a to b, then from b to c. 

Initially we don’t know how far anything is apart, 
or if they are even connected. So when we compute 
this pairwise distance we look at all the other pairs 
of points and see if we can use a more efcient route. 
For instance, suppose my initial route from Bozeman 
to Butte was to drive to Los Angeles, then back to 
Butte. Ten I compute the distance from Bozeman to 
Helena, I can realize that it is much faster for me to 
drive to Helena then to Butte. 

Tis algorithm uses the triangle inequality (equa-
tion 2.4) to approximate distances to neighboring 
points. After computing a distance between two 
points, it then considers all other pairs of points and 
updates upper and lower bounds (with the triangle 
inequality) through this newly computed edge. Once 
the ratio upper / lower ≤ 1 + ε  for all pairs of points 
the algorithm terminates. Te goal is to minimize 
the total number of distance calculations (which are 
assumed to be expensive). 

At best, this algorithm runs in O(n2) time. Since 
after each distance calculation the algorithm re-com-
putes all other pairwise bounds (which is (n

2 )). At 
worst, the algorithm must compute all pairwise dis-
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F I G U R E  3  

Clustering results on the Shapes 
data set for various values of ε. 
The color denotes which cluster elements are 
a part of. Points that are measured as closer 
together are in the same cluster. 
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Clustering metric run times 
for the Athens small data 
set 
Table displaying clustering metrics 
(measured with respect to the complete 
algorithm) and the run times for various ε 
values ran on the Athens small data set. 

Epsilon Homogeneity Complete V-Score Time (s) 

10 0.929056 0.785739 0.851408 559.1532 

5 0.969117 0.805154 0.87956 742.6007 

3 0.982907 0.824797 0.896937 1025.282 

2 0.982907 0.878377 0.927706 1194.397 

1.5 0.982907 0.935371 0.95855 1408.396 

1 0.982907 0.935371 0.95855 1764.475 

0.5 0.982907 0.976183 0.979533 2837.134 

0.35 0.982907 0.976183 0.979533 3747.833 

0.1 1 1 1 7007.029 

(a) (b) 

(c) 

(d) Running time in seconds to compute 
distances on standard home computer 

(a) ε = 10 (b) ε = 2 (c) ε = 0.1 

F I G U R E  4  

Resulting approximation 
graph for various epsilon 
values on the Shapes data 
set. 
This is a visual representation of which pairs 
of points distances are computed between. 
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tances, and it then still re-computes all other pairwise 
bounds, resulting in O(n4). However, it is assumed 
that the distance computation is very expensive 
relative to n. So, this factor of n2 from updating the 
bounds is relatively insignifcant. 

4. Methods 
For the continuous Frechet distance, we used the 
Athens small data set found in [1]. Tis was a small 
data set of containing 73 paths. We found an online 
library that implemented an approximation algo-
rithm of the continuous Frechet distance.3 

3. Te implementation was provided by an open source library Fred found at https://github.com/derohde/Fred

We set the 
Frechet distance epsilon at 0.00001 to get as close 
as possible to the real distance between paths. Ten 
we found the complete distance matrix and ran the 
approximation for various epsilon values.  

For the Hausdorf distance we made our own 
artifcial data set. We generated 6 diferent shapes 
in the cube [-1,1]3 ⊂ ℝ3. We have a sphere, pyramid, 
torus, cylinder, and cube. Each shape consists of 500 
randomly generated points on the boundary of the 
surface.Ten we ran the approximation algorithm 
while varying ε and compared the 
results of the clustering to that of the true distance. 

After computing the distance matrix, we used the 
mds [2] function in Python’s scikit-learn library [6] to 
embed the points in ℝ2 for a visualization of what the 
clustering did. 

5. Results 
For each of the data sets, we display selected clustering 
output embeddings in ℝ2 as well as a table showing 
runtimes and the metrics used to analyze cluster per-
formance. Te information for Athens can be found 
in Supplemental Figure 14 and Table 1.

4. Supplemental fgures are available in the digital version of this publication at http://doi.org/10.15788.f2021.
curio5 

 Supplemental 
Figure 1 shows the clustering output for the complete 
distance graph, ε = 10, 3, 1, 0.35 in Supplemental 
Figure 1a-1e respectively. Supplemental Figure 1f 
plots the run times vs epsilon value. 
Te red dot marks how long computing the complete 
distance matrix takes. Te information for Shapes can 
be found in Figure 3 and Supplemental Table 1. Te 
Shapes fgure and table show information in the same 
style as the Athens fgure and table. 

Figure 4 depicts a visualization of the graphs pro-
duced from the approximation algorithm ran on the 
Shapes data set. Note that with ε = 0.1, the graph is 
complete and computes every edge. 

6. Discussion 
For the Shapes data set, the approximation algorithm 
performed very well. With ε = 10, the approximation 
performed almost identically to the true distance. 
Ten when ε = 2, it performed exactly the same as the 
true distance. Tis can be seen in Figure 3 and the 
corresponding subfgures. Tis is possibly due to the 
dataset being very contrived. We had to use a more 
simple dataset due to have a more reasonable running 
time. Tis dataset could be expanded to include noise 
or more complicated shapes. But the purpose of this 
project was to gain a rough idea of applicability of 
this method, so improving the dataset is not a priority. 
Tis dataset has shown that the approximation 
algorithm can perform very well even at high ε values, 
drastically reducing running time while still maintain-
ing comparable performance. In Figure 4, we can see 
the edge density increase as epsilon decreases. 
Tis matches our intuition that more direct distanc-
es must be computed as we decrease epsilon. It is 
also interesting to note, in Figure 4a it is easy to see 
that the clusters (adjacent nodes in circle) are more 
connected (we know these are the cluster because we 
read the clusters in groups). So essentially we have 5 
highly connected clusters, with an edge or two to give 
an intuition as to where the other clusters are. 

For the Athens dataset, the approximation algo-
rithm still performed very well.Tis dataset is far more 
realistic and exemplary of a real-world application. 
We see in table 1 that the results get increasingly 
better results (not perfect) as we decrease ε. Although, 
even at incredibly high ε = 10 we still have a v-score 
of 0.85. Tis is still ‘pretty good’ depending on the 
application and runs in 10% of the time. So this algo-
rithm could be very practical for real world issues. 

One thing to consider when using this algorithm 
is the use of large data. Due to the extra n2 term from 
updating bounds, this algorithm can pay a heavy price 
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on large datasets. So one area for future work is identifying 
this ‘goldilocks’ zone where we fnd the balance between 
number of points, and the distance computation cost. 

In summary, this algorithm could be very applicable to 
real world problems. It depends on the application and how 
precise the distance computations need to be. Often, the 
data points also already have a large degree of uncertainty, so 
the loss of precision from the approximation isn’t relevant. It 
can also be good to use as a prototype to be able to quickly 
run trials to gain an idea or test an algorithm, and save the 
complete execution for a more fnal product. 
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S U P P L E M E N TA L  TA B L E  1  

Clustering metric run times 
for the Shapes data set 
Table displaying clustering metrics 
(measured with respect to the complete 
algorithm) and the run times for various ε 
values ran on the data set. 

Epsilon Homogeneity Complete V-Score Time 

10 1 0.970462 0.98501 938.984 

5 1 0.970462 0.98501 1200.163 

3 1 0.970462 0.98501 1471.606 

2 1 1 1 2009.892 

1.5 1 1 1 2354.257 

1 1 1 1 2700.931 

0.5 1 1 1 5302.438 

0.35 1 1 1 6043.424 

0.1 1 1 1 6069.802 

(e) 

(f ) Running time in seconds to compute 
distances on standard home computer 

(a) (b) 

(c) (d) 

S U P P L E M E N TA L  F I G U R E  1  

Clustering results on the Athens 
small data set for various values 
of ε. 
The color denotes which cluster elements are 
a part of. Points that are measured as closer 
together are in the same cluster. 
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