
Journal of undergraduate research at Montana State University Fall 2021

Accessibility Note: This PDF contains mathematical notation that may not be compatible with some assistive techno-
se contact CuriositasJournal@montana.edu. logies. For a LaTex version of the manuscript or for other assistance, plea

Title:
Approximating Expensive Distance Metrics

Authors:
Elliott Pryor, Nathan Stoufer

Author Afliation:
Gianforte School of Computing, Montana State University

Volume:
Fall 2021

Pages:
22-27

Abstract:
Computing the distance between point a and point b is typically considered to be very easy. However, there are times
when computing a distance can take signifcant computation time; we call these expensive distance metrics. Suppose
we have some expensive distance metric and we need to compute the distances between a bunch of points. Tis
paper explores a method that to reduce the number of queries to the distance metric and the efect on clustering. Te
authors fnd that total run time can be reduced while only inducing small inaccuracies in clustering output.

Curiositas is an interdisciplinary research journal dedicated to presenting the breadth and depth of undergraduate research that occurs at Montana
State University. Te journal places a particular emphasis on showcasing overlooked domains of undergraduate research, such as the humanities
and arts, alongside traditional scientifc research. Curiositas is committed to the belief that research on MSU’s campus does not just occur in large
laboratories and research groups: it occurs in every discipline and touches every element of scholarship that occurs at MSU. Articles in Curiositas
are reviewed by a faculty member in the appropriate discipline (where applicable) and by an interdisciplinary undergraduate review committee.

Please send questions and comments to Montana State University
CuriositasJournal@montana.edu Department of Microbiology & Cell Biology

109 Lewis Hall · PO Box 173520 · Bozeman, MT 59717
406-994-2902 · mcb@montana.edu montana.edu/curiositas

https://montana.edu/curiositas
mailto:mcb@montana.edu
mailto:CuriositasJournal@montana.edu
mailto:CuriositasJournal@montana.edu

Computer Science

Approximating Expensive Distance Metrics
Elliott Pryor and Nathan Stoufer1

Gianforte School of Computing, Montana State University

1. Tis work was done during a course project in Computational Geometry, under guidance of Dave Millman.

http://doi.org/10.15788.f2021.curio5

Computing the distance between point a and point b is typically considered to be very easy. However, there are
times when computing a distance can take signifcant computation time; we call these expensive distance met-
rics. Suppose we have some expensive distance metric and we need to compute the distances between a bunch
of points. Tis paper explores a method that to reduce the number of queries to the distance metric and the
efect on clustering. Te authors fnd that total run time can be reduced while only inducing small inaccuracies
in clustering output.

1. Introduction
Computing the distance between point a and point b
is typically considered to be very easy. In most cases,
we use simple Euclidean distance in two dimensions
d(a,b) = √(a.x − b.x)2 + (a.y − b.y)2. Tese sorts of
distances can be evaluated by a computer very quickly.

But what if that is not always the case? Some
applications use metrics (subsection 2.1) that are very
expensive to compute. What if we said the distance
between two points on Earth is the minimum
distance making sure that a person could walk the
entire thing (i.e. you can’t walk of a clif, over water,
up a wall, etc.). Well that makes things harder as the
answer is not always the straight line between a and
b, we might have to go around a mountain or wind
along a riverbank. Tere are a lot of diferent paths
that we would have to compare which takes a long
time. If we have to compute this distance a hundred
times that would take a while, but what about a mil-
lion, or a few million.

In many cases, we want to consider the distances
between many diferent objects. For example, when
clustering points we typically want to fnd the closest
points to another. If we want to fnd the closest object
to another point, we have to consider the distances to
all the other objects in the dataset. If we want to do
this for all pairs of points in the dataset (as in cluster-
ing) this results in (n) distance computations, where n2
is the total number of points in the dataset.
If n is large this can result in a huge number of dis-
tance computations (which we assume to take a long
time).

We want a way to approximate these distances so
we don’t have to do the long distance computation so
many times. In this paper, we implement an existing
approximation algorithm [5] in order to test the
runtime improvements compared to the loss of ac-
curacy from the approximation. Our project is based
on work by Kerber and Nigmetov [5], a paper that
presents an algorithm that computes an approximate
distance metric on a fnite metrics space.We imple-
mented the approximation algorithm and tested it on
two “expensive” metric spaces: Hausdorf distance [4]
on point sets and continuous Frechet distance [8] on
paths in ℝ. Ten we clustered the points using DB-
SCAN [3] with the actual and approximate distances.
DBSCAN gives a potential practical application
where this algorithm could be used, and can help map
or quantify distortions caused by the approximation.
We evaluated the performance of DBSCAN with
homogeneity, completeness, and the V-measure [7].

Te rest of the paper is organized as follows. In
Section 2 we provide basic information about what a
metric is and the distance functions. In Section 3 we
provide more details about the approximation algo-
rithm. In Section 4 we describe our experiment setup,
and provide the results in Section 5. Finally, we give a
discussion and concluding remarks in Section 6.

2. Background

2.1 Metrics
What is a metric? At a high level a metric is a function
with three properties (like Euclidean distance). If

Curiositas : Fall 2021 23

https://space.We
http://doi.org/10.15788.f2021.curio5

w---------

d(a b) is our metric then it has to satisfy these conditions:

d(a, b) ∈ [0,∞) (2.1)
d(a, b) = 0 if a=b (2.2)

d(a, b) = d(a, b) (2.3)
d(a, b) ≤ d(a, c) + d(a, b) (2.4)

Te frst one (2.1) just says that we cannot have a negative
distance.Te second one (2.2) says that if the distance
between two points is zero (i.e. they are right on top of each
other) then they are the same point. It also says that the
distance between a point and itself must be zero. Te third
condition (2.3) says it is just as far from a to b as it is from b
to a. Te last condition (2.4) is called the triangle inequality
and it is important to this paper. It says that it cannot be
shorter (it could be the same) to go to a third `middle’ point
then to the destination. For instance, it cannot be shorter to
drive from Bozeman to Helena, then Helena to Butte than
it is to drive directly from Bozeman to Butte.

2.2 Big O Notation
Big O notation is a way to denote the asymptotic complex-
ity of an algorithm. Tis is often used to denote running
time or space usage of algorithms.

Defnition 2.5 (Big O Notation)– A function f is Big O of
a function g, denoted f ∈O(g), if there exists k, c such that
0 ≤ f (n) ≤ c · g (n) for all n > k.

One way to think about this, is to think about the domi-
nant term in the function, or the highest order term.
For n large enough, the contribution of the other terms is
negligible. We can also envision this graphically, if we zoom
way out the graph of f (x) looks pretty much the same as the
graph of c · g(x).

2.3 Continuous Frechet Distance
Frechet distance is a way to compare the distance between
two curves. One common way to think about this is a
person walking their dog. Te person is on one curve, while
the dog is on the other. Te Frechet distance is the shortest
leash the person could use.

Mathematically, where A, B are curves, and α, β are con-
tinuous, non-decreasing reparameterizations of [0,1] where
α(0) = β(0) = 0 and α(1) = β(1) = 1. [8]

F(A, B) = inf max{d(A(α(t), B(β(t))} (2.6)
α, β t∈[0,1]

Expensive Distance Metrics | Pryor & Stoufer

F I G U R E 1

Vizualization of Frechet Distance

F I G U R E 2

Vizualization of Hausdorf
Distance.

Curiositas : Fall 2021 24

https://distance.Te

Computer Science

2.4 Hausdorf Distance
Hausdorf Distance is used to compare the distance
between two sets or point clouds. It is the maximum
of the minimum distances between the sets.
So take two collections of points, call them A and B.
Pick a point in A, then fnd the closest point in B.
We do this for all points in A. Ten repeat for B to A,
and choose the one that is the biggest.
In our experiments, we just used Euclidean distance
(straight line √(a.x − b.x)2 + (a.y − b.y)2) as the distanc-
es between individual points within the point clouds.

Mathematically, let d be a distance metric, then

H(A, B) = max{ sup d(a, B), sup d(A, b)} (2.6)
a∈A b∈B

We can fairly trivially see that this takes O(nm) time
where m = |A|, n = |B|. So for large sets (n, m big)
this can be very expensive.

2.5 Clustering Metrics
Tese metrics are used to evaluate the quality of
the clustering results in our experiments. We use:
completeness, homogeneity, and v-score [7]. Tey
are three diferent ways of considering how accurate
a given clustering is on a scale 0-1. Suppose we have
a set of points with true labels - classes. Te goal of
the clustering problem is to produce clusters of these
points that exactly match the true labels of the points;
i.e. a cluster will contain all members of one class, and
no members of any other class.

Homogeneity - measures if all clusters contain
only points of a single class. A cluster could be fully
homogenous if it contains only a few number of
points (of same class). In other words, a cluster can be
homogenous if it is ‘smaller’ than or equal to the class.

Completeness - measures if all points in a class
belong to a single cluster. A cluster could be complete
if it contains everything (we produce only one cluster).
In other words, a cluster can be complete if it is `larg-
er’ than or equal to the class.

V-Measure - combines homogeneity and com-
pleteness together in one value. It takes the weighted
average of homogeneity and completeness. For our
experiments we weight both terms equally, so it is just
the average of the two values.

We note a perfect clustering corresponds to a score
of 1 on all metrics.

3. Algorithm
We implemented an 1 + ε approximation algorithm
[5] for use with expensive distance metrics.
Our implementation can be found on our GitHub
repo.2

2. https://github.com/nathanstoufer/expensive-distance-metrics

Te overall goal of the algorithm is to reduce
the number of explicit distance computations
that are needed. Te 1 + ε is the error ratio, so the
approximate distance

actual distance ≤ 1 + ε for any pair of points. We can
choose ε to be anything we want, so this can be an
arbitrarily good approximation.

In the base case (computes exact distance, ε = 0) we
would need to compute all the pairwise distances (n

2).
At a high level, the algorithm computes a pairwise dis-
tance between a, b and stores it as an edge in a graph.
A graph just gives information about the connection:
a is connected to c if there is an path from a to b in
this graph. Tink of the path as our trip planner, we
can go from a to b, then from b to c.

Initially we don’t know how far anything is apart,
or if they are even connected. So when we compute
this pairwise distance we look at all the other pairs
of points and see if we can use a more efcient route.
For instance, suppose my initial route from Bozeman
to Butte was to drive to Los Angeles, then back to
Butte. Ten I compute the distance from Bozeman to
Helena, I can realize that it is much faster for me to
drive to Helena then to Butte.

Tis algorithm uses the triangle inequality (equa-
tion 2.4) to approximate distances to neighboring
points. After computing a distance between two
points, it then considers all other pairs of points and
updates upper and lower bounds (with the triangle
inequality) through this newly computed edge. Once
the ratio upper / lower ≤ 1 + ε for all pairs of points
the algorithm terminates. Te goal is to minimize
the total number of distance calculations (which are
assumed to be expensive).

At best, this algorithm runs in O(n2) time. Since
after each distance calculation the algorithm re-com-
putes all other pairwise bounds (which is (n

2)). At
worst, the algorithm must compute all pairwise dis-

Curiositas : Fall 2021 25

https://github.com/nathanstouffer/expensive-distance-metrics

F I G U R E 3

Clustering results on the Shapes
data set for various values of ε.
The color denotes which cluster elements are
a part of. Points that are measured as closer
together are in the same cluster.

0.,

Actual

.. ..

····· •♦

-. -

. qi-.
• Pj',Offlid ·. -·

• o;OO ·• ?Yr•mid ·. -·

; .. .
.. ..

. qi-.
• Pj',Offlid ·. -·

Expensive Distance Metrics | Pryor & Stoufer

TA B L E 1

Clustering metric run times
for the Athens small data
set
Table displaying clustering metrics
(measured with respect to the complete
algorithm) and the run times for various ε
values ran on the Athens small data set.

Epsilon Homogeneity Complete V-Score Time (s)

10 0.929056 0.785739 0.851408 559.1532

5 0.969117 0.805154 0.87956 742.6007

3 0.982907 0.824797 0.896937 1025.282

2 0.982907 0.878377 0.927706 1194.397

1.5 0.982907 0.935371 0.95855 1408.396

1 0.982907 0.935371 0.95855 1764.475

0.5 0.982907 0.976183 0.979533 2837.134

0.35 0.982907 0.976183 0.979533 3747.833

0.1 1 1 1 7007.029

(a) (b)

(c)

(d) Running time in seconds to compute
distances on standard home computer

(a) ε = 10 (b) ε = 2 (c) ε = 0.1

F I G U R E 4

Resulting approximation
graph for various epsilon
values on the Shapes data
set.
This is a visual representation of which pairs
of points distances are computed between.

Curiositas : Fall 2021 26

Computer Science

tances, and it then still re-computes all other pairwise
bounds, resulting in O(n4). However, it is assumed
that the distance computation is very expensive
relative to n. So, this factor of n2 from updating the
bounds is relatively insignifcant.

4. Methods
For the continuous Frechet distance, we used the
Athens small data set found in [1]. Tis was a small
data set of containing 73 paths. We found an online
library that implemented an approximation algo-
rithm of the continuous Frechet distance.3

3. Te implementation was provided by an open source library Fred found at https://github.com/derohde/Fred

We set the
Frechet distance epsilon at 0.00001 to get as close
as possible to the real distance between paths. Ten
we found the complete distance matrix and ran the
approximation for various epsilon values.

For the Hausdorf distance we made our own
artifcial data set. We generated 6 diferent shapes
in the cube [-1,1]3 ⊂ ℝ3. We have a sphere, pyramid,
torus, cylinder, and cube. Each shape consists of 500
randomly generated points on the boundary of the
surface.Ten we ran the approximation algorithm
while varying ε and compared the
results of the clustering to that of the true distance.

After computing the distance matrix, we used the
mds [2] function in Python’s scikit-learn library [6] to
embed the points in ℝ2 for a visualization of what the
clustering did.

5. Results
For each of the data sets, we display selected clustering
output embeddings in ℝ2 as well as a table showing
runtimes and the metrics used to analyze cluster per-
formance. Te information for Athens can be found
in Supplemental Figure 14 and Table 1.

4. Supplemental fgures are available in the digital version of this publication at http://doi.org/10.15788.f2021.
curio5

 Supplemental
Figure 1 shows the clustering output for the complete
distance graph, ε = 10, 3, 1, 0.35 in Supplemental
Figure 1a-1e respectively. Supplemental Figure 1f
plots the run times vs epsilon value.
Te red dot marks how long computing the complete
distance matrix takes. Te information for Shapes can
be found in Figure 3 and Supplemental Table 1. Te
Shapes fgure and table show information in the same
style as the Athens fgure and table.

Figure 4 depicts a visualization of the graphs pro-
duced from the approximation algorithm ran on the
Shapes data set. Note that with ε = 0.1, the graph is
complete and computes every edge.

6. Discussion
For the Shapes data set, the approximation algorithm
performed very well. With ε = 10, the approximation
performed almost identically to the true distance.
Ten when ε = 2, it performed exactly the same as the
true distance. Tis can be seen in Figure 3 and the
corresponding subfgures. Tis is possibly due to the
dataset being very contrived. We had to use a more
simple dataset due to have a more reasonable running
time. Tis dataset could be expanded to include noise
or more complicated shapes. But the purpose of this
project was to gain a rough idea of applicability of
this method, so improving the dataset is not a priority.
Tis dataset has shown that the approximation
algorithm can perform very well even at high ε values,
drastically reducing running time while still maintain-
ing comparable performance. In Figure 4, we can see
the edge density increase as epsilon decreases.
Tis matches our intuition that more direct distanc-
es must be computed as we decrease epsilon. It is
also interesting to note, in Figure 4a it is easy to see
that the clusters (adjacent nodes in circle) are more
connected (we know these are the cluster because we
read the clusters in groups). So essentially we have 5
highly connected clusters, with an edge or two to give
an intuition as to where the other clusters are.

For the Athens dataset, the approximation algo-
rithm still performed very well.Tis dataset is far more
realistic and exemplary of a real-world application.
We see in table 1 that the results get increasingly
better results (not perfect) as we decrease ε. Although,
even at incredibly high ε = 10 we still have a v-score
of 0.85. Tis is still ‘pretty good’ depending on the
application and runs in 10% of the time. So this algo-
rithm could be very practical for real world issues.

One thing to consider when using this algorithm
is the use of large data. Due to the extra n2 term from
updating bounds, this algorithm can pay a heavy price

Curiositas : Fall 2021 27

http://doi.org/10.15788.f2021
https://github.com/derohde/Fred

Expensive Distance Metrics | Pryor & Stoufer

Elliott Pryor is a Senior at Montana State University
studying Computer Science and Mathematics. He
was a recipient of the 2021 Goldwater Scholarship,
and he has been involved in undergraduate research
since his freshman year. He hopes to develop new
machine learning technologies for applications in
healthcare and medicine. Beyond work, he enjoys
reading as well as hiking, camping, and rock climbing.

Nathan Stoufer graduated from MSU in Spring
2021 with a degree in Mathematics and Computer
Science. Currently, he is a software engineer at onX
maps. His favorite game is cribbage and he loves
to ski, run, and play ultimate frisbee!

on large datasets. So one area for future work is identifying
this ‘goldilocks’ zone where we fnd the balance between
number of points, and the distance computation cost.

In summary, this algorithm could be very applicable to
real world problems. It depends on the application and how
precise the distance computations need to be. Often, the
data points also already have a large degree of uncertainty, so
the loss of precision from the approximation isn’t relevant. It
can also be good to use as a prototype to be able to quickly
run trials to gain an idea or test an algorithm, and save the
complete execution for a more fnal product.

References
[1] Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and

CarolaWenk. A comparison and evaluation of map construction
algorithms using vehicle tracking data. GeoInformatica,19(3):601–632,
2015.

[2] Ingwer Borg and Patrick JF Groenen. Modern multidimensional
scaling: Teory and applications. Springer Science & Business Media,
2005.

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et
al. A density-based algorithm for discovering clusters in large spatial
databases with noise. In kdd, volume 96, pages 226–231, 1996.

[4] Daniel P Huttenlocher, Gregory A. Klanderman, and William
J Rucklidge. Comparing images using the hausdorf distance. IEEE
Transactions on pattern analysis and machine intelligence, 15(9):850–
863, 1993.

[5] Michael Kerber and Arnur Nigmetov. Metric spaces with expen-
sive distances. International Journal of Computational Geometry &
Applications, 30(02):141–165, 2020.

[6] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Tirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[7] Andrew Rosenberg and Julia Hirschberg. V-measure: A condi-
tional entropy-based external cluster evaluation measure. In Proceed-
ings of the 2007 joint conference on empirical methods in natural
language processing and computational natural language learning
(EMNLP-CoNLL), pages 410–420, 2007.

[8] Timothy Randall Wylie. Te discrete Fréchet distance with
applications. PhD thesis, Montana State University-Bozeman, College
of Engineering, 2013.

Curiositas : Fall 2021 28

Actual Approx Epsilon - 10

,;~=-.. ~
•. ~ :

Approx Epsilon - 3 Approx Epsilon - 1

Approx Epsilon - 0.35

Time

.·;,.

\\•"'.. · . .' .

:· ..

Supplemental Figures Expensive Distance Metrics | Pryor & Stoufer

S U P P L E M E N TA L TA B L E 1

Clustering metric run times
for the Shapes data set
Table displaying clustering metrics
(measured with respect to the complete
algorithm) and the run times for various ε
values ran on the data set.

Epsilon Homogeneity Complete V-Score Time

10 1 0.970462 0.98501 938.984

5 1 0.970462 0.98501 1200.163

3 1 0.970462 0.98501 1471.606

2 1 1 1 2009.892

1.5 1 1 1 2354.257

1 1 1 1 2700.931

0.5 1 1 1 5302.438

0.35 1 1 1 6043.424

0.1 1 1 1 6069.802

(e)

(f) Running time in seconds to compute
distances on standard home computer

(a) (b)

(c) (d)

S U P P L E M E N TA L F I G U R E 1

Clustering results on the Athens
small data set for various values
of ε.
The color denotes which cluster elements are
a part of. Points that are measured as closer
together are in the same cluster.

Curiositas : Fall 2021 29

